Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive Features</td>
<td>4</td>
</tr>
<tr>
<td>Warranty</td>
<td>6</td>
</tr>
<tr>
<td>Preface</td>
<td>7</td>
</tr>
<tr>
<td>Safety (including: Important Safety Information, Safety Alert Symbols)</td>
<td>8</td>
</tr>
<tr>
<td>General Safety Rules</td>
<td>9</td>
</tr>
<tr>
<td>Safety Decals</td>
<td>19</td>
</tr>
<tr>
<td>General Description</td>
<td>25</td>
</tr>
<tr>
<td>Dimensions & Capacities</td>
<td>26</td>
</tr>
<tr>
<td>Initial Start-up</td>
<td>27</td>
</tr>
<tr>
<td>Field Testing</td>
<td>28</td>
</tr>
<tr>
<td>General Operating Procedures</td>
<td>29</td>
</tr>
<tr>
<td>Lubrication & Maintenance</td>
<td>30</td>
</tr>
<tr>
<td>Preventative Maintenance Pays!</td>
<td>30</td>
</tr>
<tr>
<td>Hydraulic System</td>
<td>30</td>
</tr>
<tr>
<td>Hydraulic Hose</td>
<td>31</td>
</tr>
<tr>
<td>Conveyor Chain</td>
<td>31</td>
</tr>
<tr>
<td>Conveyor Gearcase</td>
<td>33</td>
</tr>
<tr>
<td>Bin Sensor</td>
<td>33</td>
</tr>
<tr>
<td>Lubrication of Bearings</td>
<td>33</td>
</tr>
<tr>
<td>Fasteners</td>
<td>33</td>
</tr>
<tr>
<td>Clean-Up</td>
<td>33</td>
</tr>
<tr>
<td>Lubricant & Oil Specifications</td>
<td>34</td>
</tr>
<tr>
<td>Hydraulic System</td>
<td>34</td>
</tr>
<tr>
<td>Gearcase Lubricant</td>
<td>34</td>
</tr>
<tr>
<td>Grease Gun Lubricant</td>
<td>34</td>
</tr>
<tr>
<td>Conveyor Chain Oiler</td>
<td>34</td>
</tr>
<tr>
<td>Lubrication Chart</td>
<td>35</td>
</tr>
<tr>
<td>Conveyor Selection</td>
<td>36</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>37</td>
</tr>
<tr>
<td>Hydraulic Schematic</td>
<td>37</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Torques</td>
<td>40</td>
</tr>
<tr>
<td>Spread Pattern</td>
<td>41</td>
</tr>
<tr>
<td>Crushing Strength</td>
<td>41</td>
</tr>
<tr>
<td>SGN</td>
<td>41</td>
</tr>
<tr>
<td>Product Setup Guidelines</td>
<td>42</td>
</tr>
<tr>
<td>Crush Test</td>
<td>42</td>
</tr>
<tr>
<td>SGN Scale Test</td>
<td>43</td>
</tr>
<tr>
<td>Spread Pattern Test Kit</td>
<td>47</td>
</tr>
<tr>
<td>Spinners</td>
<td>48</td>
</tr>
<tr>
<td>Spreader Preparation</td>
<td>48</td>
</tr>
<tr>
<td>Test Procedure</td>
<td>49</td>
</tr>
<tr>
<td>Test Results</td>
<td>51</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>52</td>
</tr>
<tr>
<td>Determining Driving Centers</td>
<td>53</td>
</tr>
<tr>
<td>Verifying Driving Centers</td>
<td>54</td>
</tr>
</tbody>
</table>
NOTE: This manual incorporates several interactive features to provide supplemental information and ease of navigation. The information below is to aid in the identification and use of these features.

Hyperlinks

Hyperlinks provide direct access to a specific destination when clicked. The entire Table of Contents of this manual is hyperlinked to provide quick access to all sections of this manual when viewing the electronic version.

Hyperlinks within the content are denoted by **blue, bold underlined** text. Electronic format viewers can click these links for direct access to New Leader online features. Internet access is required.

Quick Reference (QR) Codes

Quick reference codes provide direct access to a specific destination when activated. An example is provided below. In the printed version of this manual, viewers may scan the codes with a supporting mobile device for direct access to New Leader online features. Mobile data is required.

The electronic version of this manual provides the option to scan codes on-screen, or to click the code like a button. Internet access/mobile data is required.

![Click or Scan - Highwayequipment.com](image-url)
Insert Current New Leader Warranty
PLEASE ! ALWAYS THINK SAFETY FIRST !!

The purpose of this manual is to familiarize the person (or persons) using this unit with the information necessary to properly install, operate, and maintain this system. The safety instructions indicated by the safety alert symbol in the following pages supersede the general safety rules. These instructions cannot replace the following: the fundamental knowledge that must be possessed by the installer or operator, the knowledge of a qualified person, or the clear thinking necessary to install and operate this equipment. Since the life of any machine depends largely upon the care it is given, we require that this manual be read thoroughly and referred to frequently. If for any reason you do not understand the instructions, please call your authorized dealer or our Product Sales and Support Department at 1-888-363-8006.

It has been our experience that by following these installation instructions, and by observing the operation of the spreader, you will have sufficient understanding of the machine enabling you to troubleshoot and correct all normal problems that you may encounter. Again, we urge you to call your authorized dealer or our Product Sales and Support Department if you find the unit is not operating properly, or if you are having trouble with repairs, installation, or removal of this unit.

We urge you to protect your investment by using genuine HECO parts and our authorized dealers for all work other than routine care and adjustments.

Highway Equipment Company reserves the right to make alterations or modifications to this equipment at any time. The manufacturer shall not be obligated to make such changes to machines already in the field.

This Safety Section should be read thoroughly and referred to frequently.

ACCIDENTS HURT !!!

ACCIDENTS COST !!!

ACCIDENTS CAN BE AVOIDED !!!
IMPORTANT SAFETY INFORMATION

Figure 1.1 - The need for safety cannot be stressed strongly enough in this manual. At Highway Equipment Company, we urge you to make safety your top priority when operating any equipment. We firmly advise that anyone allowed to operate this machine carefully read, learn and understand all messages and information in this manual and on machine’s safety decals before operating machine, as well as familiarize themselves with the location and function of all machine controls.

The following guidelines are intended to cover general usage and to assist you in avoiding accidents. There will be times when you will run into situations that are not covered in this section. At those times the best standard to use is common sense. If, at any time, you have a question concerning these guidelines, please call your authorized dealer or our Product Sales & Support Department at (800) 363-1771.

SAFETY ALERT SYMBOLS

TAKE NOTE! THIS SAFETY ALERT SYMBOL FOUND THROUGHOUT THIS MANUAL IS USED TO CALL YOUR ATTENTION TO INSTRUCTIONS INVOLVING YOUR PERSONAL SAFETY AND THAT OF OTHERS. FAILURE TO FOLLOW THESE INSTRUCTIONS CAN RESULT IN INJURY OR DEATH.

In this manual and on the safety signs placed on the unit, the words “DANGER,” “WARNING,” “CAUTION,” and “NOTICE” are used to indicate the following:

- **DANGER**
 Indicates an imminently hazardous situation that, if not avoided, WILL result in death or serious injury. This signal word is to be limited to the most extreme situations and typically for machine components that, for functional purposes, cannot be guarded.

- **WARNING**
 Indicates a potentially hazardous situation that, if not avoided, COULD result in death or serious injury, and includes hazards that are exposed when guards are removed. It may also be used to alert against unsafe practices.

- **CAUTION**
 Indicates a potentially hazardous situation that, if not avoided, MAY result in minor or moderate injury. It may also be used to alert against unsafe practices.

- **NOTICE!**
 Is used for informational purposes in areas which may involve damage or deterioration to equipment but generally would not involve the potential for personal injury.

- **NOTE:**
 Provides additional information to simplify a procedure or clarify a process.
PREPARE FOR EMERGENCIES

Figure 1.2 - Be prepared if a fire starts. Keep a fully charged fire extinguisher and first aid kit in accessible place on the vehicle at all times.

Fire extinguisher must be Type ABC or Type BC.

Keep emergency numbers for doctors, ambulance service, hospital and fire department available at all times.

Figure 1.2

INSPECT HARDWARE BEFORE USE

Figure 1.3 - Inspect all bolts, screws, fasteners, keys, chain drives, body mounts and other attachments periodically. Immediately replace any missing or damaged parts immediately with proper specification parts.

Inspect spinner fins, spinner frame mounting and spinner fin hardware daily. Look for missing or loose fasteners, wear and cracks. Replace immediately if needed. Use only new SAE grade 5 or grade 8 screws and self-locking nuts.

Tighten all bolts, nuts and screws to specified torques. Refer to “Standard Torques” in Maintenance section of this manual.

Figure 1.3

HANDLE FLAMMABLE MATERIALS SAFELY

Figure 1.4 - Handle fuel and hydraulic oil with care. They are highly flammable.

Always stop the engine before refueling machine or filling hydraulic reservoir.

Never smoke while adding fuel or oil to machine. Add fluids in a safe place away from open flame and sparks.

Do not allow overflow. Clean up spilled fuel and oil immediately.

Always have a multipurpose dry chemical fire extinguisher filled and available during machine operation and when adding fuel. Know how to use it.

Figure 1.4
HANDLE HAZARDOUS MATERIALS SAFELY

Figure 1.5 - Materials to spread can be dangerous.

Improper selection, application, use or handling may be a hazard to persons, animals, plants, crops or other property.

A Safety Data Sheet (SDS) provides specific details on chemical products: physical and health hazards, safety procedures and emergency response techniques.

Check the SDS before starting any job using a hazardous material. Follow all instructions and precautions given by the material manufacturer.

WORK IN WELL-VENTILATED AREAS

![Warning Icon]

Never run machine engine inside a building unless adequate ventilation is provided to safely and properly remove exhaust fumes.

Figure 1.6 - Always work in a properly ventilated area.

Engine exhaust fumes can cause sickness or death. If it is necessary to run an engine in an enclosed area, use proper equipment to safely remove exhaust fumes from the working area.

Open building doors and get fresh air into the working area whenever possible.

PROTECT AGAINST NOISE

Figure 1.7 - Long periods of exposure to high decibels or loud noise can cause hearing impairment or loss.

Wear proper hearing protection during periods of exposure to high decibels or loud noise.

Wear a proper hearing protective device such as earmuffs or earplugs to protect against high decibels and / or uncomfortable loud noises.
AVOID MOVING PART HAZARDS

Figure 1.8 - Entanglement in rotating drive lines or moving parts will cause serious injury or death.
Stay clear of all moving parts, such as shafts, couplings and universal joints.
Make sure all personnel are clear of machine before starting.

Figure 1.9 - Do not operate machine without all guards and shields closed and secured. Disconnect and lock out power source before removing guards.
Disconnect and lock out power source before adjusting or servicing.
Keep hands, feet, hair and clothing away from moving parts.

Figure 1.10 - Keep away from spinners while they are turning.
Rocks, scrap metal and other material can be thrown from the spinners violently. Stay away from discharge area.
Stop machine before servicing or adjusting. Wear eye protection.
Make sure discharge area is clear before spreading.

Figure 1.11 - Stay out of the spreader.
If it is necessary to enter the spreader, return to the shop, empty body, turn off all power, engage brakes, shut down engine and remove keys before entering.
Tag all controls to prohibit operation. Tags should only be placed, and later removed, by the person working in the body.
General Safety Rules

Operations

DO NOT CLIMB OR STAND ON MACHINE

Figure 1.12 - Never allow any personnel to ride in or on the machine.

Use only inspection ladder or portable ladder to view the unit. Use caution when getting on and off the ladder, especially in wet, icy, snowy or muddy conditions. Clean mud, snow and ice from steps and footwear.

Always maintain three-point contact with steps, ladders and handholds. Face the machine when mounting and dismounting inspection ladder. Do not jump off the machine.

OPERATE MACHINE SAFELY

Always walk around and visually inspect the machine before using. Check immediate vicinity of machine for people and obstructions. Ensure adequate visibility.

Avoid distractions such as reading, eating or operating personal electronics that take your attention away from operating the machine. Never operate the machine under the influence of alcohol, drugs or while otherwise impaired.

Always come to a complete stop before reversing. Be sure that all personnel are clear of machine path. Turn around and look directly for best visibility. Ensure all rear view mirrors are properly installed and adjusted. Use a signal person when backing if view is obstructed or when in close quarters.

Always disengage hydraulics before shutting down engine. DO NOT start engine with hydraulics engaged.
TRAVELING & TRANSPORTING ON PUBLIC ROADS

Always walk around and visually inspect the machine before traveling on public roads. Check for damage and/or faulty components that can fail and create a hazard or unsafe condition. Make sure all machine systems operate properly, including but not limited to: headlights, tail and brake lights, hazard warning lights, turn indicators, parking brake, horn and rear view mirrors. Repair or replace any component that is not in proper working order.

Never drive machine at a speed that causes it to bounce or cause loss of control.

Obey all traffic safety laws and regulations. Operate the machine with hazard warning lights on, unless prohibited by law. It is the operator’s responsibility to activate and use road lights properly while traveling on public roads.

Cover all loads that may spill or blow away. Environmental damage may result. Do not spread dusty materials where dust may create pollution, visibility issues or interfere with traffic on public roads.

When transporting equipment or machine on a trailer, ensure it is properly secured. Be sure that SMV signs on equipment or machine are covered while in transport on a trailer.

Be aware of overhead structures and power lines. Make sure machine can safely pass under. Refer to “Dimensions & Capacities” pages in the Operations section of this manual.

NAVIGATING ROUGH & UNEVEN TERRAIN

Figure 2.1 - Turn slowly and be careful when traveling on rough surfaces and side slopes. Avoid holes, ditches and obstructions that may cause machine to roll over, especially with a loaded spreader.

Never drive near the edge of a gully or steep embankment.

Load may shift, causing vehicle to tip.
READ AND UNDERSTAND MAINTENANCE PROCEDURES

Figure 3.1 - Read the maintenance and safety instructions and understand them before performing any maintenance procedure.

Never perform any maintenance procedure or repair if the instructions and safety procedures are not fully understood. Only trained and qualified personnel should perform any maintenance procedure or repair.

Never modify any equipment or add attachments not approved by Highway Equipment Company.

DO NOT SERVICE OR ADJUST MACHINE WHILE IN MOTION

Figure 3.2 - Never lubricate, service or adjust the machine or any of its components while they are moving.

Never wear loose clothing or jewelry when working near machine tools or moving parts.

Remove rings and other jewelry to prevent electrical shorts and other personal injury when in contact with machine tools or moving parts.

Close and secure all guards removed for service. Check all screws, bolts, nuts and fasteners for proper torques before operating machine.

WEAR PROPER PROTECTIVE EQUIPMENT

Figure 3.3 - Wear close-fitting clothing and proper safety equipment for the job.

Always wear eye protection when working on or around the machine.

Wear a suitable hearing protection device such as earmuffs or earplugs to protect against high decibels or loud noises.

Prolonged exposure to high decibels or loud noise can cause hearing impairment or loss of hearing.

Wear protective gloves to protect hands from cuts, abrasions and minor burns.
HANDLE FLAMMABLE SOLVENTS SAFELY

Figure 3.4 - Never use diesel fuel, kerosene, gasoline or any flammable solvents for cleaning.

Perform work using flammable fluids and solvents in a safe place away from open flame and sparks. Do not smoke.

Do not weld, grind or flame cut on any tank containing oil, fuel, fumes or any other flammable material, or any container that contents or previous contents are unknown. Move all flammable materials and containers away from work area.

Clean up spilled fuel and oil immediately.

Always have a multipurpose dry chemical fire extinguisher filled and available. Know how to use it.

USE PROPER LIFTING EQUIPMENT

Figure 3.5 - Use only lifting devices that meet or exceed OSHA standard 1910.184 or ASME B30.20-2013.

Never lift equipment over people.

Never lift a loaded unit. Never lift unit with any loose objects or persons in the body. Loads may shift or fall if improperly supported, causing death, serious injury or machine damage.

Before unfastening heavy parts or assemblies, support with adequate hoist or other device to prevent falling, tipping, swinging or any other movement that may cause injury or damage.

USE PROPER TOOLS FOR THE JOB

Figure 3.6 - Use of improper tools (such as a screwdriver instead of a pry bar, pliers instead of a wrench, a wrench instead of a hammer) can cause serious injuries or machine damage.

Use power tools only to loosen threaded parts and fasteners. Using power tools to tighten may cause over-tightening and component damage.

Use only service parts meeting New Leader specifications.
HIGH PRESSURE FLUID HAZARDS

Figure 3.7 - Escaping fluid under pressure can penetrate the skin causing serious injury.

Always stop machine, allow to cool and relieve pressure before servicing hydraulic system. Never open hydraulic lines under pressure. Make sure all connections are tight and all hoses are in good condition before pressurizing system.

Always use a piece of cardboard or wood to search for leaks instead of hand. Wear impervious gloves and eye protection when servicing system.

Seek medical attention immediately if fluid penetrates your skin. Gangrene may result if wound is left untreated.

AVOID HEATING NEAR HIGH PRESSURE FLUID LINES

Figure 3.8 - Flammable spray can be generated by heating near pressurized fluid lines, resulting in burns to yourself and bystanders.

Do not heat by welding, soldering or using a torch near pressurized fluid lines or other flammable materials.

Pressure lines can suddenly burst when heat goes beyond the immediate flame area.

AVOID TOXIC FUMES & DUST

Figure 3.9 - Hazardous fumes can be generated when paint is heated from welding, soldering or using a torch.

Remove paint before heating:
• Remove a minimum of 4 in (100mm) from area to be affected by heating. If paint cannot be removed, wear an approved respirator while heating or welding.
• Avoid breathing dust from sanding or grinding on paint.
• If a solvent or paint stripper is used, wash stripper away with soap and water before heating or welding. Remove solvent or paint stripper containers and other flammable material from area. Allow fumes to disperse for at least 15 minutes before heating or welding.

Do not use chlorinated solvents in areas where welding will take place.

Perform all work in a well-ventilated area that will carry all toxic fumes and dust away.
CLEAN MACHINE OF HAZARDOUS CHEMICALS

![Figure 3.10](image1)

CAUTION

During application of hazardous chemicals, residue can build up on the inside or outside of the vehicle. Clean vehicle according to use instructions of hazardous chemical.

Figure 3.10 - When exposed to to hazardous chemicals, clean exterior and interior of vehicle daily to keep free of the accumulation of visible dirt and contamination.

1. Clean operator’s station to maintain unobstructed visibility of all windows and mirrors, and safe operation of all controls.

![Figure 3.10](image2)

NOTICE!

Directing pressurized water at electronic/electrical components, bearings and other sensitive parts and components may cause product malfunctions. Reduce pressure and spray at 45 to 90 degree angles.

2. Wash entire exterior of vehicle.

3. Dispose of any wash water with hazardous concentrations of active or non-active ingredients according to published regulations or directives.

HANDLE BATTERIES SAFELY

![Figure 3.11](image3)

WARNING

Sulfuric acid in battery electrolyte is poisonous. It can burn skin, eat holes in clothing, and cause blindness if it contacts eyes.

Figure 3.11 - Lead acid batteries generate flammable and explosive gases. Keep sparks and flame away from batteries. Do not smoke.

If acid contacts eyes, skin or clothing, flush with water immediately. Seek immediate medical attention if acid contacts eyes.

PROPER TIRE MAINTENANCE

![Figure 3.12](image4)

Figure 3.12 - Never weld on a wheel or rim that has a tire on it.

Never attempt to mount or remove a tire unless using the proper equipment, tire safety cage, instructions, training, and you are qualified to perform the work safely. Failure to follow the correct procedures when mounting a tire on a wheel or rim can cause an explosion and serious injury.

Tire service procedures must be performed by trained and qualified personnel.
General Safety Rules

Storage

PARK VEHICLE SAFELY

Figure 4.1 - When leaving the vehicle unattended for any reason, be sure to:

- Shut down PTO.
- Shut off vehicle’s engine, and unit’s engine if applicable.
- Place vehicle transmission in “Neutral” or “Park”.
- Set parking brake firmly.
- Remove ignition key and take it with you.
- Block wheels.

These actions are recommended to avoid unauthorized use, runaway, vandalism, theft and unexpected operation during startup.

SUPPORT MACHINE PROPERLY

Figure 4.2 - When machine is removed from vehicle, always store on adequate supports on a firm level surface. Improper supporting or storage of spreader may cause machine to fall, resulting in serious injury or death.

Never use lifting device to free machine from a chassis, storage stands or frozen ground, or to lift the chassis in any way. Shock loading is prohibited and sudden accelerations must be avoided. Lifting in such a manner could result in injury or machine damage.

DISPOSE OF WASTE PROPERLY

Figure 4.3 - Improper disposal of waste can threaten the environment and ecology. Potentially harmful waste used with New Leader equipment such as fuel, oil, filters and batteries.

Use leakproof containers when draining fluids. Do not use food or beverage containers that may mislead someone into drinking from them. Do not pour waste onto the ground, down a drain, or into any water source.

Inquire on proper disposal methods from your local environmental or recycling center, or from your local dealer.
SAFETY DECAL MAINTENANCE

Keep safety decals and signs clean and legible at all times.

Replace safety decals and signs that are missing or have become illegible.

Replaced parts that displayed a safety sign should also display the current sign.

Safety decals or signs are available from your dealer’s Parts Department or from Highway Equipment Company by calling (800) 363-1771.

SAFETY DECAL INSTALLATION

Clean Surface
Wash the installation surface with a synthetic, free-rinsing detergent. Avoid washing the surface with a soap containing creams or lotion. Allow to dry.

Position Safety Decal
Decide on the exact position before application. Application marks may be made on the top or side edge of the substrate with a lead pencil, marking pen, or small pieces of masking tape. NOTE: Do not use chalk line, china marker, or grease pencil. Safety decals will not adhere to these.

Remove the Liner
A small bend at the corner or edge will cause the liner to separate from the decal. Pull the liner away in a continuous motion at a 180-degree angle. If the liner is scored, bend at score and remove.

Apply Safety Decal
Tack decal in place with thumb pressure in upper corners. Using firm initial squeegee pressure, begin at the center of the decal and work outward in all directions with overlapping strokes. NOTE: Keep squeegee blade even—nicked edges will leave application bubbles. Pull up tack points before squeegeeing over them to avoid wrinkles.

Remove Pre-mask
If safety decal has a pre-mask cover remove it at this time by pulling it away from the decal at a 180 degree angle. NOTE: It is important that the pre-mask covering is removed before the decal is exposed to sunlight to avoid the pre-mask from permanently adhering to the decal.

Remove Air Pockets
Inspect the decal in the flat areas for bubbles. To eliminate the bubbles, puncture the decal at one end of the bubble with a pin (never a razor blade) and press out entrapped air with thumb moving toward the puncture.

Re-Squeegee All Edges
1. **CAUTION: TO AVOID INJURY OR MACHINE DAMAGE:**
 - Do not operate or work on this machine without reading and understanding the operator’s manual.
 - Keep hands, feet, hair and clothing away from moving parts.
 - Do not allow riders on machine.
 - Avoid unsafe operation or maintenance.
 - Disengage power takeoff and shut off engine before removing guards, servicing or unclogging machine.
 - Keep unauthorized people away from machine.
 - Keep all guards in place when machine is in use.
 - If manual is missing, contact dealer for replacement.

2. **DANGER: MOVING PART HAZARD**
 To prevent death or serious injury:
 - Stay out of box while conveyor is moving.
 - Disconnect and lock out power source before adjusting or servicing.
 - Do not ride on the spreader.

3. **CAUTION: HAZARDOUS MATERIALS**
 To avoid injury or machine damage:
 - Materials to be spread can be dangerous.
 - Improper selection, application, use or handling may be hazardous to persons, animals, crops or other property.
 - Follow instructions and precautions given by material manufacturer.
4. WARNING: HIGH-PRESSURE FLUID HAZARD
 To prevent death or serious injury:
 - Do not check leaks with hands while system is operating as high pressure oil leaks can be dangerous!
 - Relieve pressure before disconnecting hydraulic lines or working on system.
 - Make sure all hydraulic fluid connections are tight and all hydraulic hoses and lines are in good condition before applying pressure to the system.
 - Wear protective gloves and safety glasses or goggles when searching for leaks. Use wood or cardboard instead of hands.
 - Do not use hydraulic lines for hand holds or steps.
 - Components may be hot.
 - Get immediate medical attention if skin is pierced with fluid as gangrene may result.

5. WARNING: MOVING PART HAZARD
 To prevent death or serious injury:
 - Close and secure guards before starting.
 - Do not stand or climb on machine.
 - Disconnect and lockout power source before adjusting or servicing.
 - Keep hands, feet and hair away from moving parts.

6. WARNING: FALLING HAZARD
 To prevent death, serious injury or machine damage:
 - Do not climb or stand on guard.
7. DANGER: FLYING MATERIAL AND ROTATING SPINNER HAZARD
 To prevent death or serious injury:
 - Wear eye protection.
 - Stop machine before servicing or adjusting.
 - Keep bystanders at least 60 feet away.

8. WARNING: FALLING HAZARD
 To prevent death or serious injury:
 - Do not place objects on fenders.
 - Keep off fenders. They are not intended to carry loads.
1. NOTICE: SPREAD PATTERN TESTING

To obtain optimal machine performance:

Spinner assembly and material flow divider have NOT been adjusted at the factory. Before assembling unit, read and follow assembly instructions in the operation and maintenance manual for this unit.

Before spreading material, spread pattern tests must be conducted to properly adjust the spread pattern. Refer to the “How to Check your Spread Pattern” manual for adjustment instructions. A spread pattern test kit is available from your New Leader dealer.

Wind, humidity, rain and other adverse weather conditions can affect spread pattern, resulting in uneven crop growth and loss of yields.

THE MANUFACTURER OF THIS SPREADER WILL NOT BE LIABLE FOR MISAPPLIED MATERIAL DUE TO AN IMPROPERLY ADJUSTED SPREADER OR ADVERSE WEATHER CONDITIONS.

It is recommended that spread pattern tests be conducted prior to each spreading season, after any spreader maintenance, and periodically during the spreading season. Spread pattern tests must be conducted whenever a new product is to be applied.
2. NOTICE: CONVEYOR CHAIN LUBRICATION

To avoid machine damage and premature wear:

- Conveyor chain life will be noticeably extended by periodic lubrication.
- Use a 75% diesel fuel and 25% number 10 oil mixture on the links and rollers.
- Failure to keep the chain links loose and free running can result in severe damage to the conveyor chain, drag shaft, gearcase and body structure, and is cause for voiding the warranty.

3. NOTICE: HYDRAULIC RESERVOIR

To avoid machine damage:

- Change the filter element after the first 50 hours of operation, and every 250 hours thereafter.
- Keep all reservoir valves open while the pump is running.
- See “Lubricant & Hydraulic Oil Specifications” in this manual for ideal operating temperatures.
General Description

The L5034G4 is a hopper type spreader intended for spreading feedlot manure, waste water sludge, industrial waste, paper mill waste, compost, marl, poultry litter and fly ash. It is intended for mounting on the AGCO TerraGator - a series of high-flotation application vehicles.

The unit is hydraulically powered and provides independent variable speed control for the spinner and full automatic ground speed control for the conveyor. Tandem gear type hydraulic pumps provide the power and are driven by a transmission PTO.

The 34” wide (86 cm) conveyor runs the full length of the hopper bottom to deliver material to the spinners through a hydraulically adjustable metering gate at the rear of the hopper body. A feedgate sight gauge allows monitoring of the feedgate opening from the cab. The conveyor is driven by dual 6-to-1 ratio spur gear cases, each driven by a orbital type hydraulic motor.

Three conveyor options are available: pintle type chain joined by cross bars every third link (#1), every other link (#2), or every link (#3).

The distributor spinner assembly has two 30” (76cm) diameter discs. Each disc has the option of four or six formed and heat treated fins that are adjustable to radial angle. The spinner is fully adjustable by means of a rotating handle.

This product is intended for commercial use only.
Dimensions & Capacities

<table>
<thead>
<tr>
<th>Unit Length</th>
<th>Overall Length A</th>
<th>Body Length B</th>
<th>Frame Length C</th>
<th>Cab to Axle or Cab to Tandem CA/CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>14’</td>
<td>208” (528 cm)</td>
<td>156” (396 cm)</td>
<td>159” (404 cm)</td>
<td>114” (290cm) CA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit Length</th>
<th>Struck Capacity Cu Yd (Cu M) Cu Ft</th>
<th>Approximate Weight Pounds (kilograms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14’ (4.27 m)</td>
<td>14.5 (11.1) 392</td>
<td>5600 (2540)</td>
</tr>
</tbody>
</table>
Initial Start-up

WARNING Stand clear of moving machinery.

NOTE: Do not load spreader with material.

1. Check entire unit to make sure all fasteners are in place and properly tightened per “Standard Torques” in this manual.
2. Make sure no other persons are in vicinity of spreader.
3. Make sure no loose parts are in unit or on conveyor or spinner.
4. Check oil level in hydraulic reservoir; fill as necessary. Refer to “Lubricant & Hydraulic Oil Specifications” in this manual for proper oil. Completely open reservoir valves as necessary.
5. Start engine and turn on hydraulics. Run hydraulic system to bring oil up to operating temperature.
6. Run spinner only at 300RPM. Allow to run until spinner is operating smoothly and all air has been purged from system.
7. Run conveyor at 20RPM and spinner at 300RPM. Run until conveyor is operating smoothly.
8. Run conveyor at 20RPM and spinner at 700RPM. Allow both conveyor and spinner to run until operating smoothly.
9. Run conveyor at 0RPM and spinner at 0RPM. Make sure both conveyor and spinner do not move.
10. Calibrate spreader as defined in the manual for the controller that is supplied with your machine.
12. Shut system down.

WARNING DO NOT check leaks with hands while system is operating as high pressure oil leaks can be dangerous! If skin is pierced with hydraulic fluid at high pressure seek immediate medical attention as fluid injected into the skin could cause gangrene if left untreated. Relieve pressure before disconnecting hydraulic lines or working system. Make sure all hydraulic fluid connections are tight and all hydraulic hoses and lines are in good condition before applying pressure to the system. Wear protective gloves and safety glasses or goggles when working with hydraulic systems.

WARNING DO NOT check for leaks adjacent to moving parts while system is operating as there may be danger of entanglement!

13. Check all connections in hydraulic system to make sure there are no leaks.
14. Check hydraulic oil reservoir and refill to maintain level at mid-point of gauge.
Field Testing

The following procedure is a guide:

NOTE: Do NOT fill spreader with material

1. Field test over any suitable course which allows vehicle to be driven at speeds to be used while spreading.
2. Ensure unit has been properly serviced, that the hydraulic reservoir is full and gate valve under reservoir is fully open as applicable. Do not load spreader.
3. Run spinners at 500 RPM.

DANGER
Take proper safety precautions when observing conveyor and spinner speed while vehicle is in motion! These may include use of suitable mirrors clamped to permit observation by a safely seated observer, following the spreader in another vehicle at a safe distance, or other suitable means. Do not stand on fenders, in body or on any part of spreader as there is danger of falling off the vehicle or into moving parts! Use great care in performing this test!

Start engine. Turn control to “on” position. Engage hydraulics and allow to run at fast idle long enough to bring hydraulic oil up to operating temperature. Spinners should revolve at moderate speed and the conveyor should not move. Refer to controller’s operation manual for conveyor operating instructions.

Set program to operational mode and begin forward travel. Move conveyor switch to “on” position. Conveyor should start immediately when vehicle moves and should continue to run at speeds which should vary directly with the vehicle’s ground speed; the conveyor should speed up as vehicle speed increases and slow down as vehicle speed reduces. Spinner speed should remain constant when engine speed is above minimum operating range.
General Operating Procedures

1. Make sure unit has been properly serviced and is in good operating condition. It is highly recommended to run the spreader prior to loading material to ensure acceptable operation.
2. Program controller with correct data for material(s) and application.
3. Adjust feedgate to appropriate setting.
4. Adjust spinner to give spread pattern desired. Calibrate and spread pattern test for any new material.
5. Fill applicable bins with material to be spread.
7. Begin spreading.

⚠️ CAUTION Drive only at speeds which permit secure control of vehicle.

NOTICE! CHANGE HYDRAULIC OIL FILTER AFTER FIRST WEEK (OR NOT MORE THAN 50 HOURS) OF OPERATION ON A UNIT.

*Visit newleader.highwayequipment.com/calculators/yield-output for interactive tools to calculate yield, proper feedgate opening, conveyor revolutions per minute and mph to maximize the performance of your spreader.
PREVENTATIVE MAINTENANCE PAYS!

The handling and spreading of commercial fertilizers is a most severe operation with respect to metal corrosion. Establish a frequent, periodic preventative maintenance program to prevent rapid deterioration to spreading equipment. Proper cleaning, lubrication and maintenance will yield longer life, more satisfactory service and more economical use of your equipment.

WARNING Shut off all power and allow all moving parts to come to rest before performing any maintenance operation.

HYDRAULIC SYSTEM

Proper oil in the hydraulic system is one of the most important factors for satisfactory operation. Utmost cleanliness in handling the oil cannot be stressed enough. Keep hydraulic oil in original closed containers, clean top of container before opening and pouring, and handle in extremely clean measures and funnels.

Check hydraulic oil level and filter condition regularly.

Refer to “Lubricant and Hydraulic Oil Specifications” for selection of the proper hydraulic fluid for use in the hydraulic system.

WARNING DO NOT check leaks with hands while system is operating as high pressure oil leaks can be dangerous! If skin is pierced with hydraulic fluid at high pressure seek immediate medical attention as fluid injected into the skin could cause gangrene if left untreated. Relieve pressure before disconnecting hydraulic lines or working system. Make sure all hydraulic fluid connections are tight and all hydraulic hoses and lines are in good condition before applying pressure to the system. Wear protective gloves and safety glasses or goggles when working with hydraulic systems.

WARNING DO NOT check for leaks adjacent to moving parts while system is operating as there may be danger of entanglement!

Periodically inspect hydraulic hoses and fittings for leaks. Repair and replace components as necessary.

Check hydraulic oil daily by means of sight gauge on reservoir. Add oil as necessary to maintain level around mid-point of sight gauge. Periodically inspect hoses and fittings for leaks.

NOTICE! Change hydraulic oil filter after first week (or not more than 50 hours) of operation on a unit.

After first filter change, replace filter when indicator reaches Red Zone.

Drain reservoir through drain plug (not through suction outlet), flush, and refill and change filter element annually. Oil and filter should also be changed whenever oil shows any signs of breaking down under continued high-pressure operation. Discoloration of oil is one sign of breakdown.
HYDRAULIC HOSE

Hose assemblies in operation should be inspected frequently for leakage, kinking, abrasion, corrosion or other signs of wear or damage. Worn or damaged hose assemblies should be replaced immediately.

![WARNING]

Testing should be conducted in approved test stands with adequate guards to protect the operator.

Clean
Clean assembly by blowing out with clean compressed air. Assemblies may be rinsed out with mineral spirits if the tube stock is compatible with oil, otherwise hot water at 150°F (65.55°C) maximum may be used.

Inspect
Examine hose assembly internally for cut or bulged tube, obstructions, and cleanliness. For segment style fittings, be sure that the hose butts up against the nipple shoulder; band and retaining ring are properly set and tight, and segments are properly spaced. Check for proper gap between nut and socket or hex and socket. Nuts should swivel freely. Check the layline of the hose to be sure the assembly is not twisted. Cap the ends of the hose with plastic covers to keep clean.

Test
The hose assembly should be hydrostatically tested at twice the recommended working pressure of the hose. Test pressure should be held for not more than one minute and not less than 30 seconds. When test pressure is reached, visually inspect hose assembly for: 1. Any leaks or signs of weakness. 2. Any movement of the hose fitting in relation to the hose. Any of these defects are cause for rejection.

Storage and Handling
Hose should be stored in a dark, dry atmosphere away from electrical equipment, and the temperature should not exceed 90° F (32° C).

CONVEYOR CHAIN

![WARNING]

Stay out of the hopper body. If it’s necessary to enter the hopper, return to the shop, empty body, turn off all power, set vehicle brakes, lock engine starting switch and remove keys before entering. Tag all controls to prohibit operation. Tags should be placed, and later removed, only by person working in the body.

Hose down unit and remove any material build-up on sprockets and under chain.

![NOTICE!]

The conveyor will move away from the bottom panel if material accumulates under the conveyor or on the sprockets. The more material that accumulates, the closer the chain will come to the chain shields. If the conveyor should catch a chain shield, it could permanently damage the conveyor, the chain shields or the unit. Do not remove material while conveyor or spinner is running!
Lubrication & Maintenance

Lubrication

Make sure unit is clean and completely dry. Lubricate conveyor chain at the end of each day of usage using a mixture of 75% diesel fuel and 25% SAE 10 oil. Shut down spinner and run conveyor at 20 RPM for two full revolutions to lubricate chain. After each unit washing, allow to dry, then lubricate.

Lubricate chain through two full revolutions. After each unit washing, allow to dry, then lubricate.

Before filling the unit with spreading material, activate the controller or power switch to run the pump oiler. Bleed all air from the lines and adjust the two spray nozzles so that the oil mixture sprays vertical onto the sprockets and chain.

Tension

Proper chain tension is also a factor in chain and sprocket life. This adjustment is made by turning the idler screws on each side of the unit at the front idler bearings. See Figure 2.

Loosen the idler jam nut (A) and turn the idler adjustment screw (B) to adjust tension. Turn clockwise to increase tension and, turn counterclockwise to decrease tension. Adjust idlers equally on each side.

Measure from rear of sill to point where conveyor chain contacts bottom flange of sill. Verify that measurements on both sides of conveyor are equal and within specified range. See Figure 3.

NOTICE!

Over-tensioning of conveyor chain will lead to excessive load on the system, causing excessive chain and sprocket wear and can cause extremely high starting pressures. Under-tensioning allows conveyor chain to “wrap” around drive sprockets and not exit sprocket freely, causing excessive chain stretch and surging of the conveyor which will result in interrupted flow of material to the spinners.

Figure 1 - Spray Nozzle

Figure 2

Figure 3
CONVEYOR GEARCASE

Drain oil in a new unit after first two weeks (or not more than 100 hours) of operation, and flush gear case thoroughly with light oil. Refer to “Lubricant and Hydraulic Oil Specifications” section for proper grade oil and recommended amounts of lubricant. After initial change, oil should be changed every 2,000 hours of operation or annually, whichever occurs first. Check gearcase oil level monthly.

BIN SENSOR

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Stay out of the spreader. Do not climb on spreader. Use a portable ladder to inspect, clean and maintain the bin sensor from outside the spreader. Failure to do so could result in injury from falling.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICE!</td>
<td>Wipe sensor clean periodically to prevent accumulation of product. Avoid wet material as it may stick to sensor. If material sticks to sensor it won’t warn user when bin is low.</td>
</tr>
</tbody>
</table>

Clean sensor with long handled brush or hose from outside of spreader. Do not aim high pressure sprayer directly at sensor—it could damage the components.

LUBRICATION OF BEARINGS

Grease in a bearing acts to prevent excessive wear of parts, protects ball races, and balls from corrosion and aids in preventing excessive heat within the bearing. It is very important the grease maintain its proper consistency during operation. It must not be fluid and it must not channel.

Make sure all fittings are thoroughly cleaned before grease is injected. Points to be lubricated by means of a grease gun have standard grease fittings.

Lubricate bearings by pumping grease slowly until it forms a slight bead around the seals. This bead indicates adequate lubrication and also provides additional protection against the entrance of dirt.

FASTENERS

Tighten all screws fasteners to recommended torques after first week of operation and annually thereafter. If loose fasteners are found at anytime, tighten to recommended torque. Replace any lost or damaged fasteners or other parts immediately. Check body mounting hardware every week.

CLEAN-UP

| NOTICE! | High pressure wash can inject water and/or fertilizer into control components, causing damage. Use caution when cleaning these areas. |

Thoroughly wash unit every two to three days during the operating season to maintain minimal maintenance operation. Hose unit down under pressure to free all sticky and frozen material.

It is important the unit be thoroughly cleaned at the end of each operating season. All lubrication and maintenance instructions should be closely followed. Repaint worn spots to prevent formation of rust.
HYDRAULIC SYSTEM

Use premium quality lubricants with 100-200 SUS or 20-43 cSt viscosity at operating temperatures. The hydraulic fluid's specifications in the table below are for normal operating conditions. Extreme environments or dirty conditions may require the use of different oils. Consult your New Leader dealer or the Product Support Department at Highway Equipment Company for systems operating outside normal conditions.

<table>
<thead>
<tr>
<th>Ideal Oil Operating Temperature</th>
<th>115-158°F (46.11-70° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Premium Lubricant</td>
<td>Multi-Purpose Agriculture Hydraulic & Transmission Oil</td>
</tr>
<tr>
<td>Lubricant Specifications</td>
<td></td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>Greater than 130</td>
</tr>
<tr>
<td>Viscosity at 40°C, cst</td>
<td>Less than 68</td>
</tr>
<tr>
<td>Viscosity at 100°C, cst</td>
<td>Greater than 9</td>
</tr>
<tr>
<td>Acceptable Fluid Example</td>
<td>Mobil 424</td>
</tr>
</tbody>
</table>

GEARCASE LUBRICANT

Fill the gearcase with non-corrosive type extreme pressure (E.P.) gear oil conforming to MIL-L2105 B multi-purpose gear lubricating oil requirements (API Service GL 4) based on ambient temperatures listed below:

- Single Pinion: 1 Pint (.50 L)
- Dual Pinion, Planetary: 1.5 Pints (.70 L)

<table>
<thead>
<tr>
<th>Ambient Temperature</th>
<th>Oil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 40°F (4.4°C)</td>
<td>SAE 80 E.P.</td>
</tr>
<tr>
<td>40° - 100° F (4.4° - 38° C)</td>
<td>SAE 90 E.P.</td>
</tr>
<tr>
<td>Above 100° F (38° C)</td>
<td>SAE 140 E.P.</td>
</tr>
</tbody>
</table>

GREASE GUN LUBRICANT

Use a waterproof ball and roller bearing lithium base lubricant with a minimum melting point of 300°F (150° C). This lubricant should have a viscosity which assures easy handling in the pressure gun at prevailing atmospheric temperatures. The grease should conform to NLGI No. 2 consistency.

CONVEYOR CHAIN OILER

Use a 75% diesel fuel and 25% SAE 10 oil mixture on the links and rollers.
WARNING Shut off all power and allow all moving parts to come to rest before performing any maintenance operation.

The spreader should be regularly lubricated with the lubricants recommended in this manual in accordance with the following chart:

<table>
<thead>
<tr>
<th>Location</th>
<th>Places</th>
<th>Method</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission PTO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slip Yoke</td>
<td>1</td>
<td>Grease Gun</td>
<td>Weekly</td>
</tr>
<tr>
<td>Universal Joint</td>
<td>2</td>
<td>Grease Gun</td>
<td>Monthly</td>
</tr>
<tr>
<td>Hydraulic System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir</td>
<td>1</td>
<td></td>
<td>Check Daily; Change Annually</td>
</tr>
<tr>
<td>Filter</td>
<td>1</td>
<td>Check daily; Change when indicated (Red)</td>
<td></td>
</tr>
<tr>
<td>Conveyor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grease Zerks - Dragshaft Bearings</td>
<td>2</td>
<td>Grease Gun</td>
<td>Weekly</td>
</tr>
<tr>
<td>Grease Zerks - Idler Shaft Bearings</td>
<td>2</td>
<td>Grease Gun</td>
<td>Weekly</td>
</tr>
<tr>
<td>Take-Up Screws</td>
<td>2</td>
<td>Hand Grease</td>
<td>Weekly</td>
</tr>
<tr>
<td>Gearcase</td>
<td>1</td>
<td>Gear Oil</td>
<td>Check Monthly; Change Annually</td>
</tr>
<tr>
<td>Conveyor Chain Strands</td>
<td>2</td>
<td>Oil Mixture</td>
<td>Daily</td>
</tr>
<tr>
<td>Spinner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grease Zerks - Shaft</td>
<td>2</td>
<td>Grease Gun</td>
<td>Weekly</td>
</tr>
<tr>
<td>Grease Zerks - Jack</td>
<td>2</td>
<td>Grease Gun</td>
<td>Weekly</td>
</tr>
</tbody>
</table>

NOTE: Unusual conditions, such as excessive dust, temperature extremes or excessive moisture may require more frequent lubrication of specific parts.

*See “Lubricant and Hydraulic Oil Specifications” for types of lubricants and oil to be used.
Conveyor Selection

This chart is to help determine which conveyor is best for specific applications. Find the closest description of the type of material to be spread.

- X indicates the preferred conveyor.
- O indicates a suitable alternative conveyor.
- NR indicates the conveyor and/or spreader is not recommended for the specified application.

The density provided was used to make the conveyor recommendation. If the density of the material to be spread is outside of those in the table, contact your New Leader dealer for the best conveyor for your application.

<table>
<thead>
<tr>
<th>Product</th>
<th>Density lbs/ft³ (kg/m³)</th>
<th>#1 Chain</th>
<th>#2 Chain</th>
<th>#3 Chain*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry Litter</td>
<td>16 - 54 (256 - 865)</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Waste Sludge</td>
<td>40 - 65 (641 - 1041)</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Paper Pulp</td>
<td>approx. 42 (673)</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Compost Cattle Manure</td>
<td>36 - 65 (577 - 1041)</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Gin Trash</td>
<td>35 - 50 (561 - 801)</td>
<td>NR</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Fly Ash**</td>
<td>38 - 45 (609 - 769)</td>
<td>NR</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Gypsum**</td>
<td>65 - 80 (1041 - 1281)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Lime**</td>
<td>80 - 100 (1281 - 1602)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Sulfur**</td>
<td>80 - 100 (1281 - 1602)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>Not Recommended</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

* - A #3 conveyor is not recommended for use with material that is greater than 25% moisture content. Wet material can slip on a #3 conveyor and may not flow to the feed gate.

** - Trial and error is necessary to determine the spreader’s maximum capacity for each material so as not to exceed the system pressures of the hydraulic system and stall the conveyor.

NOTE: Field experience has shown that payload capacity can be increased with the use of chain shields in some applications.
HYDRAULIC SCHEMATIC
Troubleshooting

Spinner motors do not turn when spinner control valve is in running position or conveyor does not run when placed in “On” position. See reasons 1, 2, 3, 4, 6, 7, 8 & 9.

Spinners turn but conveyor does not run in manual mode. See reasons 5, 7, 9 & 10.

Console in operation mode, but the conveyor does not move when the machine moves. See reasons 5, 7, 9 & 10.

Spinner speed does not stay constant. See reasons 4, 8, 11, 12 & 13.

Spinners run with cab control in “Off” position. See reason 14.

Hydraulic oil overheats (200° F (93.33° C) or hotter). See reasons 1, 5, 8, 15, 16, 17 & 18.

Light flashes and buzzer sounds intermittently. Conveyor runs in jerks. See reasons 19 & 23.

Conveyor does not run with cab control “On”, PTO engaged and vehicle driving forward. See reasons 20.

Conveyor runs when control switch in cab is in “Off” position. See reasons 15 & 21.

Conveyor starts to run when PTO is engaged. See reasons 15, 20, 21 & 22.

Controller application or programming. Refer to the control manual’s Troubleshooting section.

<table>
<thead>
<tr>
<th>Reason:</th>
<th>Correction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hydraulic oil level low.</td>
<td>Add hydraulic oil to reservoir to maintain level around mid-point of sight gauge.</td>
</tr>
<tr>
<td>2. Shut Off valve on oil reservoir not open.</td>
<td>Open valve fully by turning counter clockwise until it stops.</td>
</tr>
</tbody>
</table>
| 3. Hydraulic Pump is not rotating. | 1. PTO is disengaged. Shift into engagement.
 2. Drive line has failed. Repair or replace.
 3. Key in pump shaft has failed. Replace key.
 4. U-joint pin or key has failed. Replace pin or key. |
| 4. Worn pump. | With flow meter arranged to check relief valve setting above, open load valve fully. Read flow rate with truck engine running at max RPM. Close load valve until pressure reads 1000 PSI (69 bar). Flow rate should not decrease more than three (3) GPM. If flow loss is greater, replace pump. |
| 5. Conveyor relief valve open to return line. | Using relief valve testing adapter and flow meter, test valve for opening pressure. If not 3100 PSI (214 bar), replace relief valve. |
| 6. Jammed or frozen spinner motors. | Free up. If not possible, replace as required. |
| 7. Jammed or frozen conveyor. | Free up conveyor. |
Troubleshooting

<table>
<thead>
<tr>
<th>Reason:</th>
<th>Correction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. In line relief valve set too low.</td>
<td>In line relief valve pressure should be 3100 PSI (214 bar). Set spinner control valve to “0”. Disconnect pressure line, coming from rear port on spinner control valve, at control. Reconnect this line to flow meter inlet port. Disconnect return line from control where it joins the return tube running to the reservoir. Connect flow meter load valve to return tube. Open load valve fully, run truck engine at max RPM. Slowly close load valve until pressure reaches 3100 PSI (214 bar). If this pressure cannot be reached, set up relief valve adjustment until gauge reads 3100 PSI (214 bar). CAUTION: Do not set pressure above 3100 PSI (214 bar).</td>
</tr>
<tr>
<td>11. Pump speed is not adequate to provide sufficient flow to maintain spinner speed.</td>
<td>Increase engine speed or resize hydraulic pump to meet system requirements.</td>
</tr>
<tr>
<td>12. Insufficient hydraulic oil flow at normal driving speeds.</td>
<td>Check PTO-Pump matching. If insufficient flow results, install higher percent PTO or use larger pump (Special).</td>
</tr>
<tr>
<td>13. Defective spinner control valve.</td>
<td>Replace valve metering spool spring. If no improvement, replace spinner control valve.</td>
</tr>
<tr>
<td>14. Cab control is for conveyor only—spinners run anytime vehicle engine is running, PTO is engaged and spinner control valve is in a running position.</td>
<td>None required. This is a normal condition. To stop spinners, set spinner control valve at “O” position, disconnect PTO, or shut off vehicle engine.</td>
</tr>
<tr>
<td>15. Excessive oil is being pumped.</td>
<td>1. PTO percentage too high. Change PTO to smaller percentage or use smaller pump. 2. Pump is too large. Do not exceed 40 GPM (151 LPM) pumping rate. Change to smaller pump or use smaller percentage PTO. 3. Pressure drop in control valve is sufficient to run lightly loaded conveyor motor. Shut off pump drive by disengaging PTO shaft.</td>
</tr>
<tr>
<td>16. Worn motor (spinner or conveyor).</td>
<td>Motor heats up at an excessive rate (check for this heating when system is cold). Replace motor.</td>
</tr>
<tr>
<td>17. Improper or deteriorated hydraulic oil.</td>
<td>Replace hydraulic oil with proper specification oil and replace filter.</td>
</tr>
<tr>
<td>18. Pinched or obstructed hose, hydraulic line or fitting.</td>
<td>Clear obstruction or replace part. Straighten kinked hoses.</td>
</tr>
<tr>
<td>19. Driving too fast for application rate.</td>
<td>Shift truck transmission to a lower gear. Will not normally occur if within maximum application rates.</td>
</tr>
<tr>
<td>20. Defective radar.</td>
<td>Check speed on console. Repair or replace radar as required.</td>
</tr>
<tr>
<td>21. Control processor’s power is in “Off” position.</td>
<td>Turn on control processor.</td>
</tr>
<tr>
<td>22. Involves the controller.</td>
<td>Refer to control manual.</td>
</tr>
</tbody>
</table>
Standard Torques

CAP SCREW GRADE IDENTIFICATION - MARKINGS ON HEAD

- **SAE GRADE 2**
 - No markings
- **SAE GRADE 5**
 - Three marks - 120 degrees apart
- **SAE GRADE 8**
 - Six marks - 60 degrees apart

Use Grade 2 torques for stainless steel fasteners and carriage bolts.

<table>
<thead>
<tr>
<th>CAP SCREW SIZE</th>
<th>GRADE 2</th>
<th></th>
<th></th>
<th>GRADE 5</th>
<th></th>
<th></th>
<th>GRADE 8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DRY</td>
<td>LUBE</td>
<td>DRY</td>
<td>LUBE</td>
<td>DRY</td>
<td>LUBE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4”</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/16”</td>
<td>11</td>
<td>8</td>
<td>17</td>
<td>13</td>
<td>25</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8”</td>
<td>20</td>
<td>15</td>
<td>30</td>
<td>23</td>
<td>45</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/16”</td>
<td>30</td>
<td>24</td>
<td>50</td>
<td>35</td>
<td>70</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2”</td>
<td>50</td>
<td>35</td>
<td>75</td>
<td>55</td>
<td>110</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/16”</td>
<td>65</td>
<td>50</td>
<td>110</td>
<td>80</td>
<td>150</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8”</td>
<td>90</td>
<td>70</td>
<td>150</td>
<td>110</td>
<td>220</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4”</td>
<td>100</td>
<td>120</td>
<td>260</td>
<td>200</td>
<td>380</td>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/8”</td>
<td>140</td>
<td>110</td>
<td>400</td>
<td>300</td>
<td>600</td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1”</td>
<td>220</td>
<td>160</td>
<td>580</td>
<td>440</td>
<td>900</td>
<td>650</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following information will guide you through using the SGN & Crush Strength Test Kit for your New Leader G4 Spreader. Refer to operator’s manual for details on unit safety, operation and maintenance.

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>308907</td>
<td>Kit - SGN & Crush Strength Test Kit</td>
<td>1</td>
</tr>
<tr>
<td>308908</td>
<td>Tester - Crush Strength</td>
<td>1</td>
</tr>
<tr>
<td>308909</td>
<td>Scale - SGN</td>
<td>1</td>
</tr>
</tbody>
</table>

WARNING

Use great caution while working around the spreader. Contact with spinners and other moving parts is very dangerous. Do not adjust while machinery is moving, wear eye protection and avoid discharge from spinners. Do not ride on moving spreader.

It is highly recommended to perform a Catch Test, Crush Strength Test and SGN Scale Test prior to each season, before using a new product, or if a significant visible change has occurred with a product. Testing will define granular characteristics and help determine proper spinner settings for optimal product spread.

Conduct a G4 Spread Pattern test to check settings based on test results. Refer to *G4 Spreader Installation Instructions* and *G4 Spread Pattern Manual* for installation and adjustment instructions.

CRUSHING STRENGTH

Crushing strength is the minimum pressure needed to crush individual particles.

Testing and knowing the crushing strength of a particular product will help determine maximum spinner RPM. For example: Any granule with less than three (<3) crush strength should not be broadcast with spinner speeds over 700RPM. Verify granules are not pulverized before increasing spinner speed. Refer to *Product Setup Guidelines* for additional spinner speed settings with different crush strength.

SGN

SGN (Size Grade Number) is the measurement of granule size in millimeters multiplied by 100. A product’s SGN will affect spread width.

Materials with poor uniformity (a significant percentage in 3 or more columns of scale device) may be difficult to spread accurately. Spread Pattern testing should ALWAYS be performed on any new or different material to determine actual spread width.
NOTE: SGN and Crush Strength together determine spread width.

General Rules:

A small product with low crush strength will have limited spread width capabilities. Spinner RPM must remain lower to keep from pulverizing the soft product, limiting your overall spread width. Additionally, a smaller product has less mass than that of a larger product, and in this case is another limiting factor for overall spread width.

A small product with high crush strength will have limited spread width capabilities. While spinner RPM can be increased with little worry of pulverizing the product, a smaller product has less mass than that of a larger product, which limits how far the product will carry in the spread pattern.

A large product with low crush strength will have limited spread width capabilities. While a larger product with more mass will carry farther, spinner RPM must remain lower to keep from pulverizing the soft product, limiting the overall spread width.

A large product with high crush strength has minimal spread width limitations. Spinner RPM can be increased with little worry of pulverizing the product. Additionally, a large product has more mass than that of a smaller product, allowing the product to carry farther, resulting in a wider spread width.

PRODUCT SETUP GUIDELINES

<table>
<thead>
<tr>
<th>Granule Mesh</th>
<th>Crush Strength</th>
<th>Maximum Spinner RPM</th>
<th>Flotation Machine (Spinner Height 52”) Spread Width ft (m)</th>
<th>Post Machine (Spinner Height 72”) Spread Width ft (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140-200</td>
<td>1</td>
<td>600</td>
<td>60-65(18-20)</td>
<td>70-75(21-23)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>650-700</td>
<td>65-70(20-21)</td>
<td>75-80(23-24)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>750-800</td>
<td>70-75(21-23)</td>
<td>80-85(24-26)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>850-900</td>
<td>75-80(23-24)</td>
<td>85-90(26-27)</td>
</tr>
<tr>
<td>220-300</td>
<td>1</td>
<td>600</td>
<td>70-75(21-23)</td>
<td>80-85(24-26)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>650-700</td>
<td>75-80(23-24)</td>
<td>85-90(26-27)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>750-800</td>
<td>80-85(24-26)</td>
<td>90-95(27-29)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>850-900</td>
<td>85-90(26-27)</td>
<td>95-100(29-30)</td>
</tr>
<tr>
<td>320-400</td>
<td>1</td>
<td>600</td>
<td>80-85(24-26)</td>
<td>90-95(27-29)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>650-700</td>
<td>85-90(26-27)</td>
<td>95-100(29-30)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>750-800</td>
<td>90-95(27-29)</td>
<td>100-105(30-32)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>850-900</td>
<td>95-100(29-30)</td>
<td>105-110(32-33)</td>
</tr>
<tr>
<td>>400</td>
<td>1</td>
<td>600</td>
<td>90-95(27-29)</td>
<td>100-105(30-32)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>650-700</td>
<td>95-100(29-30)</td>
<td>105-110(32-33)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>750-800</td>
<td>100-105(30-32)</td>
<td>110-115(33-35)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>850-900</td>
<td>105-110(32-33)</td>
<td>115-120(35-37)</td>
</tr>
</tbody>
</table>

IMPORTANT! Always check crush strength prior to selecting spinner speed. Pan testing should ALWAYS be performed on any new or different material to determine actual spread width. Verify granules are not pulverized by looking in the three center vials following a pan test before increasing spinner speed.
CRUSH TEST

IMPORTANT! Select granules of the most typical size and uniform shape as determined by SGN scale. Crushing strength can significantly increase with particle size.

1. Figure 1 - Place individual granule on solid, smooth surface.

2. Place New Leader crush strength tester over granule, open end flush with surface.

 Ensure marker is next to handle.

3. Figure 2 - With one hand on handle, press tester down until granule breaks.

4. Figure 3 - Release handle and note where marker rests on number scale. This is granule crushing strength.

 For example, the marker in Figure 3 is between 3 and 4 on the scale. Thus, crushing strength is 3.5.

5. Repeat 10 times and average the values.
SGN SCALE TEST

The SGN scale is an instrument designed for simple screen test of fertilizer samples. A small box fitted with five sieves, it directly produces a size histogram of the test sample. From this, the SGN can be estimated.

1. Figure 4 - To determine SGN, place scale on flat surface and open lid.
2. Fill end column with selected product to fill line.
3. Close lid securely.

4. Figure 5 - Rotate scale vertical and shake to separate material, usually less than two minutes.
5. When material finishes dispersing, turn scale to starting position.

6. Figure 6 - View level of material in each compartment and determine SGN level based on markings.
7. Figure 7 - Based on column headings and percent in each field, calculate overall SGN of the sample.

Using the above crush strength example of 3.5 and average SGN size of 338, we can now use the chart to determine our maximum spread width. In this case a maximum spinner speed of 650-700 RPM will produce a spread width of 85’ to 100’ depending on spinner height.

<table>
<thead>
<tr>
<th>Granule Mesh</th>
<th>Crush Strength</th>
<th>Maximum Spinner RPM</th>
<th>Flotation Machine (Spinner Height 52”) Spread Width ft(m)</th>
<th>Post Machine (Spinner Height 72”) Spread Width ft(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>320-400</td>
<td>1</td>
<td>600</td>
<td>80-85(24-26)</td>
<td>90-95(27-29)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>650-700</td>
<td>85-90(26-27)</td>
<td>95-100(29-30)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>750-800</td>
<td>90-95(27-29)</td>
<td>100-105(30-32)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>850-900</td>
<td>95-100(29-30)</td>
<td>105-110(32-33)</td>
</tr>
</tbody>
</table>
This page is intentionally left blank.
WARNING

Use great caution while working around the spreader. Contact with spinners and other moving parts is very dangerous. Do not adjust while machinery is moving, wear eye protection and avoid discharge from spinners. Do not ride on moving spreader.

NOTICE!

Spinner assembly and material divider have NOT been adjusted at the factory. Before spreading material, spread pattern tests must be conducted to properly adjust the spread pattern. A spread pattern test kit is available for this purpose.

THE MANUFACTURER OF THIS SPREADER WILL NOT BE HELD LIABLE FOR MISAPPLIED MATERIAL DUE TO AN IMPROPERLY ADJUSTED SPREADER.

It is recommended that spread pattern tests be conducted prior to each spreading season, after any spreader maintenance, before applying a new product, and periodically during the spreading season. Spread pattern tests must be performed for each product, blend and application rate.

Spread pattern is affected by many factors. Among the more significant of these are:

- Spinner speed
- Point of material delivery on spinner discs
- Angle of the distributor fins on the spinner discs
- Condition of spinner fins
- Material granule size
- Height of spinners from ground
- Spacing of swaths (driving centers)
- Wind and humidity
- Rate of material delivery

Since many of these factors will vary for each job, trial and experience must be used to determine the adjustments required to obtain the swath width and spread pattern desired. The following instructions outline the adjustments available and the effect that each will have on the spread pattern.

SPREAD PATTERN TEST KIT

Spread Pattern Test Kit, part no. 313960, includes the following:

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>313712</td>
<td>Box - Plastic Storage</td>
<td>1</td>
<td>58897</td>
<td>Scale – Density</td>
<td>1</td>
</tr>
<tr>
<td>313963</td>
<td>Center Collection Tray - Blue</td>
<td>1</td>
<td>313964</td>
<td>Data Sheets</td>
<td>100</td>
</tr>
<tr>
<td>70890</td>
<td>Collection Tray - Brown</td>
<td>22</td>
<td>300503</td>
<td>Screw – #6-32 x 3/8</td>
<td>46</td>
</tr>
<tr>
<td>87200</td>
<td>Divider</td>
<td>23</td>
<td>300504</td>
<td>Nut – Lock #6-32</td>
<td>46</td>
</tr>
<tr>
<td>313962</td>
<td>Rack – Tube</td>
<td>1</td>
<td>70897</td>
<td>Flags</td>
<td>5</td>
</tr>
<tr>
<td>300507</td>
<td>Test Tube</td>
<td>23</td>
<td>313965</td>
<td>Rope – 120’ marked</td>
<td>1</td>
</tr>
<tr>
<td>300505</td>
<td>Clip – Molded</td>
<td>23</td>
<td>87201</td>
<td>Stake</td>
<td>2</td>
</tr>
<tr>
<td>87332</td>
<td>Funnel</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING

Use great caution while working around the spreader. Contact with spinners and other moving parts is very dangerous. Do not adjust while machinery is moving, wear eye protection and avoid discharge from spinners. Do not ride on moving spreader.

NEW LEADER • L5034G4 AGCO
www.New-Leader.com
(800) 363-1771
306375-AA-D
Page Rev. A
SPINNERS

NOTICE! Spinner discs and fins must be kept clean and polished. Even a small build-up on a spinner fin can significantly affect the spread pattern. Rusty, rough, bent or worn fins will produce poor spread patterns.

In general, critical spinner speed will fall somewhere between 600 and 900 RPM. Spinner speed is adjusted by changing the settings in the controller. Proper spinner speed adjustment is critical in obtaining optimal spread patterns. The best spinner speed to use will depend entirely on the material being spread, and must be determined by testing.

A major factor of maximum pattern width is particle size. Swath width may vary anywhere from 25 feet (7.6 m) for very finely ground dry lime up to 120 feet (37 m) or more for extremely large fertilizer pellets.

For every material there is a critical spinner speed. In other words, there is a speed which will result in the maximum obtainable spread width. Going beyond this speed will not increase spread width, but will degrade, or crush material.

Too high of a spinner speed could result in a heavy deposit behind the truck due to break-down of material. This upper speed limit will be quite low for finely powdered material, and can be quite high for extremely coarse materials.

SPREADER PREPARATION

The spreader to be tested must be in good mechanical condition and properly adjusted. Refer to operator’s manual for details.

All damaged and worn parts must be replaced. Spinner discs and fins must be free of any material build-up, rust or paint.

Fill the hopper with the material to be spread. Run the material out to the end of the conveyor.

Set the feedgate and the in-cab controller to deliver the required rate per acre. Make sure the feedgate is level and the indicator reflects the actual gate opening measured by standing a tape measure vertically in the material.

NOTE: Do not match slope of endgate when making this measurement. Measurement must be perpendicular to conveyor.

Adjust the spinner assembly by turning the crank or, if an actuator is installed, change the setting in the controller. To begin testing, position the spinner according to the chart below.

NOTE: This chart is to be used as a reference only to begin testing.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>SPINNER FRAME SETTING in (cm)</th>
<th>SPINNER RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime</td>
<td>1 (2.5)</td>
<td>625</td>
</tr>
<tr>
<td>Straight Urea</td>
<td>3.5 (9.5)</td>
<td>700</td>
</tr>
<tr>
<td>All other Fertilizer types and blends, including Urea blends</td>
<td>3.5 (9.5)</td>
<td>750</td>
</tr>
</tbody>
</table>
TEST PROCEDURE

Using the data sheets supplied with the kit, document all spreader information and adjustments as necessary. See Figure 1.

Select an area for testing measuring at least 120 feet x 200 feet (37 m x 61 m), and with a slope of less than two degrees.

All testing should be done when the wind velocity is less than 5 MPH (8.05 km). If wind is present, testing must be done with spreader traveling parallel (within ± 15 degrees) to the wind direction.

Do not allow loaded spreader to sit for more than one hour prior to testing.

At this stage of testing, drive the spreader over the collection trays in ONLY ONE DIRECTION.

Insert a plastic grid into each of the 23 collection trays. Position the blue collection tray in the center of the spreader’s path with the longest dimension of the tray parallel to the direction of travel. Position the first left-hand and right-hand trays 10’ (3m) from center, and all subsequent trays on 5’ (1.5m) centers.

G4 SPREAD PATTERN DATA SHEET

<table>
<thead>
<tr>
<th>Pattern Test No.</th>
<th>Rev.</th>
<th>Spreader Model:</th>
<th>L4000G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site:</td>
<td>HECO</td>
<td>Serial No.:</td>
<td>432165</td>
</tr>
<tr>
<td>Date:</td>
<td>10/07/2016</td>
<td>Time:</td>
<td>10am</td>
</tr>
<tr>
<td>Material Name:</td>
<td>MAP</td>
<td>Fan Frame Setting:</td>
<td>3.25</td>
</tr>
<tr>
<td>Density:</td>
<td>65 in.²</td>
<td>Height:</td>
<td>3” in.</td>
</tr>
<tr>
<td>Crash Strength:</td>
<td>6</td>
<td>Fin Position:</td>
<td>1-2-1-2</td>
</tr>
<tr>
<td>SGN:</td>
<td>324</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application Rate:	320 lbs/acre
CFR/Constant:	.232
Spinner Speed:	780 RPM
Controller Vehicle Speed:	12 MPH
Wind: From Straight at 5 MPH	
Relative Humidity:	41%
Temperature:	67°F
Controller Swath Width:	90 ft.

(Circle Direction of Wind Relative to Spreader)

Figure 1
Four-Wheeled Vehicles

For four-wheeled application vehicles, position the spreader at the beginning of the course so that the vehicle will straddle the center collection tray. See Figure 2.

Engage spinners before navigating the course. As the vehicle approaches the flag positioned 75’ before the row of collection trays, engage the conveyor(s). Do not shut the conveyor(s) off until the vehicle approaches the second flag.

Drive spreader completely through course at normal operating speeds.

Three-Wheeled Vehicles

For three-wheeled application vehicles, straddling the center tray is not possible. Place the center collection tray beneath the vehicle just behind the front tire when the spreader is in position at the beginning of the course. See Figure 3.

Engage both the spinners and conveyor(s) before navigating the course. Do not shut the conveyor(s) off until the vehicle approaches the second flag.

Drive spreader completely through course at normal operating speeds.
TEST RESULTS

After navigating the course, shut the spreader down and park in a secure location.

Using the funnel, transfer the contents of each collection tray into its corresponding test tube beginning at one end of the trays and working towards the opposite end.

If spreading a blend of materials, inspect all tubes to determine if the blend is consistent across the entire swath width. If the blend is not consistent, use a narrower swath width. The swath width should be based on the material thrown the shortest distance.

NOTE: If spreading a slow release nitrogen product, inspect the three center tubes for crushed material. If crushed material is excessive, reduce spinner speed by 25 RPM and repeat test. If little to no crushed material is present, spinner speed may be increased by 50 RPM to increase overall swath width if desired. As long as there is little to no crushed material, this process can be repeated until maximum swath width is achieved.

Record each test tube’s volume in the box on the data sheet under the corresponding tray position and graph the spread pattern profile. See Figure 4.

Looking at the material in the test tubes and the graphed profile on the data sheet, compare the overall shape of the spread pattern to the three acceptable patterns, shown in Figure 5. If an acceptable pattern has not been achieved, proceed to “Troubleshooting” on page <DT>. Once an acceptable pattern has been achieved, proceed to “Determining Driving Centers” on page <?>.

![Figure 4](image-url)

Figure 4

![Figure 5 – Acceptable Patterns](image-url)
TROUBLESHOOTING

NOTE: It is highly recommended that ONLY ONE ADJUSTMENT be made between test samples taken. If more than one adjustment is made, it will be difficult to determine which adjustment was responsible for the change in pattern shape.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Pattern</th>
<th>Recommended Adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Directly Behind the Vehicle</td>
<td></td>
<td>1. Move the spinner forward (toward the conveyor).</td>
</tr>
<tr>
<td>Light Directly Behind the Vehicle</td>
<td></td>
<td>1. Move the spinner rearward (away from conveyor).</td>
</tr>
</tbody>
</table>
| Light Outside Vehicle’s Tire Tracks | ![Pattern](image3) | 1. Check spinner fins for material buildup.
2. Increase spinner RPM.
3. Move spinner fins to 2 - 3 - 2 - 3 positions. See Figure below. |
| Pattern Off Center | ![Pattern](image4) | 1. Check to see feedgate is level and free of caked material.
2. Make sure hillside divider is mounted squarely and centered.
3. Check to be sure spinner assembly is mounted squarely and centered.
4. Make sure material divider is mounted squarely and centered.
5. Testing should be done parallel to wind. |

Figure 6

Spinner fins are adjustable to radial angle as shown in Figure 7. Refer back to Figure 6 for fin adjustment recommendations.

Figure 7 - Spinner Fin Adjustment
DETERMINING DRIVING CENTERS

Once an acceptable pattern is obtained, as shown in Figure 5, driving centers can be determined. To determine optimum driving centers (effective swath width), determine the average amount of material in the center of the pattern. Figure 8A shows an example data sheet recorded from the profile shown in Figure 8B. Based on the example, the average amount of material in the center of the pattern is 3.0, as indicated with the red dotted line.

Next, locate the points on both the left and right side of the pattern where the amount of material is half the average amount at the center of the pattern. In the example shown in Figure 8, these points are located 45’ to the left of center, and 45’ to the right of center. The distance between these two points (90’) represents the driving centers to use.

NOTE: Once the effective swath width has been established, a change in the controller may be required.

Figure 8A - Effective Swath Width

Figure 8B
VERIFYING DRIVING CENTERS

Once optimum driving centers (effective swath width) have been established, conduct a final “S” pass over the trays to verify. Refer to Figure 9.

1. With both the spinners and conveyor turned off, drive the spreader through the center of the course, establishing an “AB” line. If the spreader vehicle is a three-wheel type, remove the center pan.
2. Line the vehicle up with either end of the row of collection trays, at a distance from the “AB” line equal to the effective swath width.
3. With both the spinner and conveyor engaged, drive past the trays.
4. Switch back and drive over the center of the trays, down the “AB” line.
5. Drive through the row of trays and switch back once again, driving past the trays on the opposite side, at an equal distance from the “AB” line as the first pass.

If the driving centers were determined correctly, all trays should have a similar amount of material, showing a near flat profile in the test tubes. If the trays near the center of the row contain more material than the others, increase driving centers. If the trays near the center of the row contain less material, decrease driving centers.

NOTE: If spreading a blend of materials, verify blend of all products is consistent across all tubes.